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1. INTRODUCTION,

Any search for a possible breakdown of quantum electrodynamics
leads inevitably to the necessity of applying important radiative corrections
to the measured results. This is due to the fact that renormalization theory
makes the form of electrodynamics at low momentum (and energy) transfers
a matter of definition, so that any discrepancy with the existing theory has
to be searched for by either studying processes in which the transferred mo
mentum is very large or by making high precision measurements on proces
ses with a moderately high momentum transfer. In either case radiative cor
rections are important: in the first because high energy charged particles a
re created and destroyed - a process which leads to large currents and the-
refore to the liberation of a considerable portion of the energy in the form
of relatively soft electromagnetic radiation - in the second case because the
high precision of the experiment requires for its interpretation a high preci
sion in the determination of any correction,

It has long been recognized (compare Schwmger(l) Yenme(z) Lo-
mon(3), Erikson(4 )) that straightforward perturbation theory does not lend
itself easily to dealing with the flood of soft photons, which emerges from
a high energy collision between charged particles. The reason for this is
that the picture of an experimenter as of one counting soft photons is not
entirely realistic: existing perturbation theory works in a representation
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in which the number of photons is diagonal and the emission of any additio
nal photon requires a further step in the perturbation procedure. The ex-
perimenter on the other hand does not see single photons, but rather anun
balance of energy and momentum between the incident and emergent parti
cles. ‘

This unbalance is attributed to electromagnetic radiation which
escapes direct observation partly because in many experiments:the detec-
tors are separated from the region in which the interaction takes place by
some form of container in which low energy radiation disappears traceles
sly, partly because the detector is not designed to register soft photons in
dividually.

A reflection of the incompatibility between the picture of an expe-
riment drawn by theory and reality is the fact that no two experiments on
the same subject but carried out with different apparatus can be compared
with one another before the radiafive corrections have been determined (and
determined in a form which is applicable to both experiments),

The main purpose of this paper is to supply the experimenter with
tools for applying the radiative corrections himself, We shall confine our
considerations to high energy reactions of the type
(1) "+t e A+ A
where A is the antiparticle of A and we assume ‘mA#O, because of the in-
terest of these reactions in view of the experiments on electron positron col
liding beams now in preparation, but we think that the method here di-

scussed is more general than what the restriction to interactions of the ty-
pe (1) might suggest.

Perturbation theory defines a cross section d26 (O,q)) for reac-
tion (1) (@ and @ are the polar angles of the A particle and we neglect heére
and in the following some complications which may arise from the spin of
the particles involved in the reaction). This cross section cannot be direc-
tly compared with experiment, since reaction (1) can never take place wi-
thout the production of photons. Indeed if the cross section for (1) were cal
culated accurately it should be zero. S ‘

6 What can actually be compared with an experiment is a cross sec-
tion d 6(0,? ,k) for reaction (1), in which the four vector k represents the
momentum and the energy carried away in the form of electromagnetic ra-
diation. Since this radiation always removes energy from the reaction and.
since, though the momenta of different photons may cancel one another, the
energy may not, it follows that k will be confined to the positive lightcone:

=y 3T
ko - w"kl.

Any individual experirnen’t on reaction (1) can be characterizedby
a function 9 (k) of the vector k. This function describes the probability that
‘a four momentum loss k will remain unnoticed; one naturally has 9 (0)=1



- and 0& 9(k)< 1. The cross section d°@& x (0,9 ) that is measured in an
,experlment described by the resolution function 9 (k) can be expressedin
terms of d® 4g:

ddo.pk)

d k
As lorig as the four momentum loss is sufficiently small, deo’
can be used in the factorized form

(2) - d26 0 Q) = Sd kQ (k

(3) 0, P.k) = k)d 2% @)

4

where d4P(k) is the probablllty of a four momentum loss in d k and

d2 6E(0 @) differs from d 6 0, ¢) determined from lowest.order pertur
bation theory by an ultrav101et correction, (Compare section (4)).

The probablllty d4P(k) is determined by applying the methods of
statistical mechanics to the predictions of the Bloch Nordsieck(5) theorem.
This theorem states that as long the recoil effects of the emitted radiation
on the emitting particles can be neglected the distribution of the number of
Pphotons is Poissonian and that the average number of photons with givenmo
mentum can be determined classically. A general formula for d4P(k) is gi-
ven in section 2, »

The properties of the function d4P(k) are dibscussed in sections 5
and 6. In section 7 we discuss what we retain to be useful approximations
to the angular distribution of the momentum loss.

The considerations of this paper will be applicable only to "good"
experiments in which the momentum resolution is sufficient to guarantee
that the energy lost in the form of radiation is small compared to the cen-
tre of mass energy E of the electron. In experiments in which high energy
photons can escape undetected the Bloch Nordsieck approximation breaks
down, since the recoil is no longer negligible and its inclusion destroys
the spearability expressed in equation (3).

2. d4P(k) DERIVED FROM THE BLOCH NORDSIECK THEOREM.

If the momentum transfer is large we can consider process (1)
as taking place in a very short time, which because of the uncertainty
principle will be of the order At = 1/2E. The incoming particles can be
pictured to be annihilated and the outgoing particles to be created in thei in
terval At. Classically we can picture this process in exactly the same
way as it was pictured by Sommerfeld in his theory of the production of
x-rays. The incoming particles are slowed down to rest (or to non- existen
ce - in either case the final product can no longer radiate) and the outgoing
particles are accelerated to their final velocities in a time At. This dece-
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leration and acceleration produces - classically - an electromagnetic
field of which we can calculate the energy from the Poynting vector for-
med from field strengths. It is also possible to obtain a Fourier analysis
of the Poynting vector, which allows one to determine the energy dW ra-
diated by process (1) into a frequency interval d@w. This energy will be
given by

(4) aw = B(E,0,w)dw

As long as the slowing down and accelerating happens in a time interval
which is very short compared to 1/W, i.e as long as W& 2E, we can as-
sume [3 to be independent of @ and that for the simple reason that in this
case we can represent the process of deceleration and accelerations by a
8 -function in time, the Fourier transform of which is a constant. For suf
ficiently small frequencies (5 will therefore only depend on the energy and
the angle 0 - it will be independent of 0 if the A particle is neutral. The
function A (E, 0) is calculated in appendix 1. The fact that for low frequen-
cies A does not depend on the frequency characterizes the spectrum (4)as
a ''noise-spectrum'. The task of determining radiative corrections there-
fore reduces to that of eliminating the noise due to the disappearance and
creation of charged particles.

From (4) one immediately concludes that the average number dn(w )
of photons in the frequency interval de? is given by

(5) d(w) = dW/w = Bdw/w

(Here and in the following we put h = 1), The total average number of pho-
tons emitted in process (1) is seen to diverge at the lower limit W =0, This
is the infrared divergence, which it is seen can have physical significance
only if there would exist an experiment which would enable us to count low
energy photons in the limit « =0, This is of course not possible: we will
only become aware of these photons if they draw some energy (or momen-
tum, about which we shall talk later) from process (1). An inspection of

(4) shows that this energy is always finite,

The correspondence principle only gives information about avera-
ges. In order to have the details of the distribution of the number of photons
one has to apply the methods of second quantization to the electromagnetic
field. As long as the photons considered are sufficiently soft and as long as
the cross sections show no violent dependence on energy and momentum
transfer or on the total energy (this is the case near a resonance) one can
neglect the quantal behaviour of the source particles. As we have already
said in the introduction this is explained by the fact that the reaction (1) will
in this case take place in a space time region of linear dimensions of the
order of 1/2E, the details of which cannot be resolved by photons the ener
gy of which is small compared to E,

The fundamental theorem concerning the quantum theory of the
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emission of soft photons from a classical source is due to Bloch and Nor
dsieck(5), They have shown that the distribution of the number of photons
is a Poisson distribution, i.e,:

(6) Pngd 1]

!
TR

Here ng is the number of photons which are emitted with momentum -1';

(we have assumed a discrete momentum spectrum for the photons, corre
sponding to the quantization of the electromagnetic field in a finite conduc
Eng box), ni is the average value of the number of photons with momentum
k - it can be determined by means of a procedure analogue to the step which
lead from equation (4) to (5) (compare appendix 1). P({nk}) is the probabili-
ty of process (1) endn}g up with nlg’l photons with momentum k1, nkz pho-
tons with momentum kz, etc.

From equation (6) one can determine the probability d4P(k) of ob-
‘serving'a four momentum loss k accompanying the reaction (1). This pro-
bability is given by

(7) a*P(x) = T Pifaph S (f k'ng, K)dk

where the sum 2 is carried out over all the values of all the ny. The
fourdimensional & -function selects the dlstrlbutlons{n 75w1th the right
energy momentum loss k, k' in the argument of the § -function is given by
k'=(k', k) -lk'l) Equation (7) shows that d4P(k)7‘0 only if k is inside or on
the future light-cone. This follows from: the fact that all the ny 2 0 and that
k' 20, , :

The sum over the distributions {n-’} can be carried out by using
the methods of statistical mechanics. To thls end one introduces a four vec
tor selector variable x, so that 8 can be replaced by

(8) 8, 3 kg, k) - (zw)'4sd4xei(x’ % k'og, -k)

One can in this way invert the order between forming the product in P(n, )
(equ. (6)) and the summation over all the distributions. The sum over the
ng? can be easily carried and one obtains:

4

(9)  dbw - (21r)'4Sd4x e h(x)-ilk, x) 44,

in which h(x) is defined as

(10) h(x) = Z (1 - et "
. X
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Inspite of (5) the expression (10) has no infrared divergence, since
1-ei(K,X) = 0 for k=0, Without any further specification the integral (10)

is indeterminate for k—30o unless a suitable limitis defined. The most sim-
ple definition of such a limit would be obtained by agreeing to extend the
product in equation (6) only over soft photons k{ K E, where K is a cut
off energy which separates the soft photons, which are observed with diffi
culty, but for which the Bloch Nordsieck theorem can be expected to hold
from the hard photons, which can be individually counted. We shall use a
different approach here and put K=E. It will be seen in the following that
the choice of the cut off has no influence whatsoever on the prediction of
the momentum and energy loss due to sufficiently soft photons. The choi-
ce K=E need only be accompanied by the caution of not using the resultant
form of d*P for energy losses which are not small compared to E. The li
mit of trustworthyness of this procedure has been discussed by Lomon(?’)_
and Etim and Touschek have shown(6) that for energies of up to about 1.5
Gev letting ko vary up to about 150 Mev should not introduce an error grea
ter than 1%, '

A very important property of the integrand in equation (9) follows
from the fact that by its definition d4P(k)7‘0 only for kg = w2 0. Definin
the scalar product (k,x) as (kx) -t (t=x,) it follows that the function e~ (x,t)
must be analytical in the lower half of the complex t-plane. (In this casethe
t-integration for ko< 0 can be completed by a circular path of integration
(from  + oo over -i o to - o) and the analyticity of h(x,t) then ensures that
the integral is zero). :

3. THE ENERGY DEPENDENCE OF d4P(k).

4
Integrating d P(k) defined in equation (9) over all momenta one
obtains.a function dP( ) which represents the probability of finding process
(1) accompanied by an energy loss in dw. Using equation (9) and observing
that f a3ke-ilkx) = (2m)3 53(3?) one gets in this way '
+ 00
(11) dP(w) = (2':r)'1 S dte
-

- +i
h(0, t) 1u)1:dw

Using (10) and (5) h(0,t) can be easily evaluated and one obtains:

(12) n(o,t) = A § %{lf (1-e71
| 0

We want to study the behaviour of dP(w) for y=E/? 1 and to
trust the result for y» 1. Introducing in (11) the dimensionless variable
x= W1t instead of t we can write : -



(13) - dP(w) = d—“’ M(y)
-with
- » = -1 ~h+ix

(12) M(y) = 2m)"" { dxe
where because of (12)

% du ~-iu
(15) h=f557(1—e )

' 0

Differentiating (14) with respect to y one gets
: | o B (1
(16) M'(y) = - BM(y)/y + (2my) Sd x(1-y)

The second term of the right hand side is zero for y> 1, because of the
analyticity of h in the lower half t-plane, For y» 1 one therefore remains
with the first term in (16) - a differential equation for M with the solution
M = const y"ﬁ so that from (13) we may conclude that that dP(w ) =

= constx dw wh-1 and we may conclude more specifically that

£

(17) NaP(w) = B D L

N is a factor of normalization, which we will now discuss. It is easily seen
that the right hand side is normalized in such a way that its integral exten-

ded over w from 0 to E is unity. On the other hand it follows from equation
(11) that the integral over dP extended from 0 to oo is unity. N is therefore

defined as

o0

E
(18) N=§ ap(w)/§ aP(w)
0 0

and it is seen that N> 1. N can be evaluated exactly by following a procedu
re used by Lomon and described in detail by Erikson and which - for com-
pleteness we summarize in appendix 2. The result is

(19) N = xﬁr(1+p,)

where X = C =1.781 is Euler's constant. For most practical applications

of the near future N is very near unity. For smallf® one has approximate-
ly: N = 1+’l\2ﬂ. /12, Putting N=1 will therefore involve an error of less

than 1%, The difference N-1 represents the probability that two or more
photons of energy &£ E combine to give an energy loss which is greater

than E, This probpability is quite small as the preceding consideration shows;
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that it should be proportional to 5 2 can easily be understood from pertur
bation theory, which requires that the probability for the emission of two
photons be proportional to the square of the finestructure constant.. (Com-
pare appendix 1). It must however be kept in mind that the preceding con-
sideration must not be interpreted physically: the Bloch Nordsieck appro-
ximation is certainly no longer valid for k=E/2 the minimum value for the
energy of the bigger of the two quanta, if the energy loss should be greater
than E. The smallness of N-1 is only an indication - which will be borne out
in section 6 - that the energyloss is mainly determined by a single photon. '

4, THE PHYSICAL INTERPRETATION OF EQU. (17) AND ITS RELATION
TO PERTURBATION THEORY.

The integration over the momenta, which lead to equation (17)
corresponds to an experiment in which the momentum resolution is zero
and in only the energy can be measured with some precision. Such an ex-
periment can be described in terms of a function Q (k) (compare section 1)
which is unity for ko=®W< AW and zero otherwise. In order that equations
(17) and (5) be applicable we assume AWKE.

Using equations (2) and (3) and inserting for dP from equation (17)
we get for the experimental cross section

2 N1 Aw » 9
(20) d 6exp (—-—) d dE

where we have supressed the dependence on the polar angles of the A-par-
ticles. We observe that the choice of the cut-off K=E is indeed only a que-
stion of normallzatmn. Had K been chosen # E we would have had to repla-
‘ce dsz by a 42 O’K and d a’K would only have been defined by equation
(20). The choice K=E is recommended by a comparison of (20) with pertur
bation theory, Expanding this equation in powers of ﬂ we obtain in first ap
proximation

(20') | 6 =~ (1§ (5log(E/A:.o))d2¢SE

exp

The lowest order radiative correction obtained from perturbation theory
can always be written in the form

(21) a6 = (1~ Plog(B/8w) +A)d*d

where d26 is the cross section obtained for process (1) in lowest non va
nishing order. The term X may depend on the angles 0 and (P but is inde-



pendent of the accuracy AW of the experiment,

The term \ represents what may be called the genuine (as oppo-
sed to the infrared) radiative correction. It is of purely theoretical concern
and bears no relation to the details of the experimental arrangement. It has
been calculated for some of the experiments proposed for Adone(7). We quo
te from Longhi - neglecting the 0 -contribution - a typical result for the in-
teraction et+e”w pt+ p~. In this case one has

(22) A =%(-%K2 —%+1?310g23¢)

This is about 6% for an energy of 1 Gev., Equation (22) bears out the general
rule that the expansion parameter of high energy quantum electrodynamics
is & log2y rather thana!

In order to obtain an approximative definition of d26 g ©of equation
(3) in terms of dzdo of perturbation theory we only have to compare the
two-equally approximative - equations (20') and (21). It is then immediate-
ly seen that the best one can to in order to make these two equations fit is
choosing

2. 2
(23) | dd, = (1+A)d6

Inserting this into equation (20) we get

=N (E5)° (1+M)d%g

2 -1, 4w B
(24) d 6exp E o

which coincides exactly, with the results previously obtained by Erikson.
The advantage of this formula - indeed its necessity - becomes clear if we
consider the specific example of an "optimal' experiment with Adone. The
best energy resolution obtainable is defined by the machine itself, which
owing to the fluctuations of the radiationlosses gives an energylpread of
about 0,5 Mev, This makes ﬂlogE/Aw = 0.6, which would certainly make
one doubt in the possibility of applying unmitigated perturbation theory. The
optimal measurement therefore reduces the cross section by a factor 0.4 ac
cording to perturbation theory. The reduction factor deduced from equation
(20) is 0.54 and it is seen that the difference is quite considerable.

An important result of (20) is that it makes two experiments with
different energy resolution directly comparable: all the theoretical work
goes into d26E and this is factored out in a comparison between two expe-
riments.
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5. THE SEPARABILITY OF d4P(k).

High energy experiments generally resolve the momentum better
than the energy, since a momentum measurement can be carried out geo-
metrically, Indeed the energy resolution may be only marginal as in the ca
se of two spark chambers in coincidence, In this case all one knows-about
the energy is that it was sufficient to let the A-particles penetrate the wall
of the reaction chamber and the sparkchamber. To apply radiative correc-
tions to such a situation one has to determine d4P as opposed to le Inthis
section we will show that the main features of d4P are already contained in
dlP and precisely that. d4P can be separated - for@<{ E - into an energy de
pendent part which behaves like dP and a part which depends on the ' 'velo-
city" ¥=%K/w , which can be attributed to the four momentum carried away
by the electromagnetic radiation. ‘

We shall show that one can write

4

(25) - dP= f%N'l d—w(‘—"—)ﬂ

2. 3
w & A(d)d u

where A(u) is a normalized threedimensional distribution function
-+ 3
(26) fadau=1 AP 0

Since the four momentum loss is confined to the positive light cone we have
of course 0€ ué 1,

_;'I‘o ove (25) we go back to equation (9), which after the substitu-
tion WwWx = ? = % becomes

: . P -d
dad d3uSd4§ e-h+1':' -i(u§)

@7) a*P() = (2m) "t &2

h - defined by equation (10) - can be written as

y . - =
(28)  h=p é %\—'_\Sdsnf(ﬁ)(l-e'“\ (¢ _(ng)))

The function f(n) represents the angular d1str1but10n of s1ng1e photons. Its
detailed behaviour is given in appendix 1. f(n) is normalized: Sd3nf(n) =1,
f{@)2 0. (28) is obtained from (10) by putting

Zag.. = IBS% Svd?)nf(ﬁ)

‘By its definition f(-rY) contains a factor S (erl -1) since n can be pictured as
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the unit vector k/‘kl representing the direction of propagation of a single
photon, ’

If one now multiplies equation (27) by w and differentiates with re
spect to w , remembering that y=E /w one obtains

L )

2 iy(z - @), bt TE)

4 _
252 Pk)=(2%) Yawd’u -2 Sd §Sd )(1-e”

As in equation (16) only the first term in the integral gives a contribution
#0 for @< E and one therefore has - because of the normalization of f -

o C)
(29} a‘Ode [BdP

From this (25) immediately follows, For if one one puts d4P(k) = plw ,-1;)
dw d u (29) can be rewritten as f@/(aloga))] log(w p(@,q)) = 3, so that
plw, u)must be of the form w ’1+3A(u) This apart from the normalization
is exactly what is expressed in equation (25). The normalization is chosen
in such a way that \f d4P extended over all energies and momenta is equal 1,

A comparison of the expression (27) with (25) gives one as a defini
tion of A : :

: . L e
(30) {SN'IA(II) _ (21\')-4y(5\fd4§ LT -iTS)

The separability in the form (25) tells us that the right hand side must be

independent of y as long as y ? 1. Equation (30) is therefore certainly va- -
“1id in the limit y-* o, In thls limit the N -integration in (28) can be explici
tely carried out. Putting N = h- Blogy, we have

(31) b= (&Sdgnf('ﬁ)logy (z —(Hg)) +i (5'25

The logarithm under the integral is defined to be positive for large positi-
ve values of its argument. The analyticity of e-h and with it of B in the ne-
gative imaginary half of the € -plane, requires that the logarithm is defi-
ned in the complex plane of its argument cut from 0 to +ioco., Equation (30)
can now be replaced by

n .
(32) A(D) =N (5'1(2'«)'4 Sd4§ ST -i(u'§)

This equatlon expresses a functional relationship between the velocity di-
stribution A(u) and the classical angular distribution f(n) We have not
succeeded to evaluate the integral (32) in a closed form, but we shall show
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in the next two sections that it is possible to obtain satisfactory approx1ma
tions for this function.

6. THE PROPERTIES OF THE VELOCITY DISTRIBUTION,

We shall first show that to order ® we can approximate A(T) by
f(F). This apart from the identity of the angular distributions of the clas-
sical radiation and the 4 momentum loss also implies that in good appro-
x1mat10n most of the _gnergy is always car;r.'led away by a s1ng1e photon,
For £(q)# o only if ]ul =1, which means |k| =@ and this is always true
for a single photon. If more than one photon were involved we would in ge
neral have |k |< &) unless all these photons would be emitted in the same
direction., To show

»

(33) A(w) = £(T) + 0(B)

we start from equation (32) and substitute T for T -(ug) (32) then beco-
mes A = Nf5~ LioTr)- 4Sd4§ e-DHT | T is defined by ‘

(34) | 7= g fntRnogyi (x -@-TE)

Differentiating A(u) with respect to uj one gets

w =_N( 2") jd g § sd nlf(nl)(t (nl u,g))-l h+1f
1

2

If one now reverses the substitution for € and replaces §‘1e 1(u§) by i 135
—1(u§) one obtains an alternative for equatlon (32), namely

i

(35) A(.lf)=-iN(21\')_4Sd4§ Sdsn'f(r‘l.')(‘p _(ng))’le'h T -i(u§)

This expressiogl\'can be easily evaluated in the limit =»0. For in that limit
we canneglect h in the exponent., The integration over T has to be carried
out in such a way that the integrand can be considered analytical in the lo-
wer half of the_..T -plane. The path of integration must therefore avoid the
pole at T = (n'g) by passing underneath. The T -integration can now be car-
ried out by closing the path of 1ntegrat10n in the upper half of the plane, the
pole giving the contrlbutlon 21‘ 18(‘5’ (n'g )) Integrating over § one then gets
another 8§ -function: (21\’) b (n' -u) Slnce % is of the order ‘Aand N (com-
pare equatlon (19)) of the form 1+0([S ) this immediately gives equation (33).

It is important to note that though (33) only holds 0(f) the normali-
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zation of A, i-e: SdBuA (u)=1+0( f,z) In most practical applications (defi
ned by the partlcularltles of the function 9 )) it turns out that the error
introduced in the radiative corrections only depends on the error in the nor
malization of A. This fortunate circumstance will be discussed in the follo
~ wing section,

The most obvious violation of our expectations presented by (33)
is that it makes | u| 1. However, this error is of course also of 0([!) This
can be shown more explicitely. Indeed

(36) | | ( > 1+(5

where the average is taken over all the directions and (36) is valid for w¢ E.
To demonstrate (36) we go back to equation (9), which we use to determine
k 2 in the average over d3k and for a given energy loss w. One has

.<k2>‘§d4x Sdsk e-h_i(k’ X)=$d4x Sd3k Ic’ze-h_i(k’ X)= - Sd4xjd3k e-hA e_i(k’ x)

where A is the Laplace operator in )?—space. Now, since for processes of
the type (1) one obviously has nff = n_f it follows that h is an even function
of x, so that grad h(0,t) = 0.. One therefore gets after an integration by parts
and carrying out the integration over d3k

<k2>S gt -0, i@t Sthh(O e (O},t)‘+i¢ot

- Now since - because of (10) and (12) - A h(0,t) = z f{’k e = ﬂSd;\A
one finds

<k Sdt h(0, t) e t_ Sd*’\gi h(o, t)+i(w - At

Because of the analyticity properties of h the A -integration need be exten

- ded only from 0 tow . From equation (17) we know that the integral overt
on the left hand side is proportional to u)@"l, the integral on the right hand
side is therefore proportional to (& - N) A -1 56 that

(37) (Y Pt =g laan (- L
2

Integrating the right hand side one immediately obtains k 1+ /3)
and this is exactly the result (36). As long as fa is small this result signifies
that the bulk of the energy loss is always due to a single photon. Multiphoton
processes are responsible only for a fraction f5 of the total energy loss.
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One can summarily take account of (36) by improving equation (33)
by putting

(38) Al = a2 aa+pt/?)

This expresgion for A(Q) pneser\fes. the normalization and gives the right
average <u > .

7. DETERMINATION OF THE INFRARED CORRECTION FACTOR.

We have shown in section 3) that the energy dependence of the in-
fra-red correction can be determined accurately. For the momentum distri
bution we have so far only derived approximations. In this section we show -
discussing some typical examples - that the approximations discussed inthe
previous section are amply accurate for their application to the next genera
tion of experiments with electron positron storage rings. '

We shall assume a resolution function 9 (k) of the special form '

, 2 2 2
(39) 9 (k) = e W /240" - arskrks/zAP

Here AW is the energy resolution of the experiment and we shall call Ap
the maximum momentum resolution., arg is a numerical 3x3 matrix norma
lized in such a way that its biggest eigenvalue is unity. '

We introduce the infra-red correction factor C to be
4
(40) clql- Sd P(k) @ (k)

and we note that it follows from the considerations of section >3)j' that C=1
if both A and Ap are infinite. . '

The considerations of sections 2) and 4) show that a knowledge of
C allows one to compare two experiments carried out on the same reaction
but with different apparatus. Two experiments giving respectively dzé'(l)
and d26 (2) are in agreement with one another if within the experilrnentae.i:'p
error in the determination of d2 @ one has

2.(1) = 42 ,(2)
(41) d dexp/C(l) =d vdexp/C(z.).

Using the separation thedrem (25) for d4P(k) and putiing
x=w/ VEA p and y =A p/AwW equation (40) can be transformed to give
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2

3 > —8,..U.UgX

: - - rsYrls
(42) C=f5N 2 de xy Sd uA(u)e

The lower limit of the x-integration is 0 the upper limit is E/V24p. If
the experimental arrangement is such that the x-integration converges ra
pidly the upper limit can be replaced by co.

A first indication of the insensitivity of the radiative correction
factor C to the details of the velocity distribution is obtained in the follo-
wing way. Consider the correctlon factor C(b, p) formed from a family
of velocity distributions b A(bu) An inspection of equation (42) then shows
that

C(b,Ap) = C(1,bd4p)

If the momentum resolution is weak and the energy resolution is strong we
approach the limit dealt with in section (3): (41) will only depend on the nor -
malization of A and its dependence on A p will be negligible. If on the other
hand the momentum resolution is good and the energy resolution is weak C
will be proportlonal to A p6 According to equations (36) and (38) we should
choose b= (1+f5) , so that in the case of godd momentum resolution we should
expect C(38)/C(33) = (1+ B) /2. C(38) is calculated with the distribution (38)
and correspondingly C(33) with the distribution (33). It is therefore seen that
the more realistic formula (38) gives a correction which is approximately
1+ ([52/2) times bigger than that given by the approximation (33), For prac
tically all experiments the error is less than 0.5%.

As further evidence for the insensitivity of C to the details of the
distribution A we consider the following special case. We put the line of col
lision of electrons and positrons in the z-direction and assume that the A
and A particles are observed by means of two sparkchambers placed at y=*a
and looking at A particles which emerge at about 90° to the direction of the
incident beam. We assume that there is no energy resolution (i. e. y=0 in e-
quation (42)) and that the momentum resolution is given by 4 p_=ea4 Py=4p, =
=Ap<«E., We shall neglect the photons emitted in the creation of the A- -parti
cles and only deal with those emitted in the annihilation of positrons and elec
trons, In th1s case the integral (42) can be evaluated 0({;2) and one gets for
C: :

- £
(43) C(33) =N 1(—‘tz,—és—-?) s g’)(1+1/137n)+0([52)

If, on the other hand one chooses for A(u) the very rough approximation

(44) A = 2 (8 @) + 8@+
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one gets

| L
(45) caa = n 1 AR .8

The difference between (45) and (43) is seen to be less than 0.25%!

Another approximation for the function f(ﬁ’), which we discuss in
appendix 1) and which takes account of the fact that some photons may be emlt
ted far off the backward and forward directions is:

(46) i@ = 3o (8 @) + S@) + 2 8@-1)
where a realistic choice of b is

, _ - 40
(47) | b=1- 06

For (‘3 =f‘:'be = 0,072 (correspo-ndin’g to E = 1000 Mev) one gets b=0,87. In
this case the integral (42) can be evaluated exactly and one gets

>
(48) - C(46) =N'1<rz—EAB>' FarBarmx)
With“

2P - pe?
1-fp [C(1-p)

It is seen from this formula that even if b were let to vary between 0 and
1-i e, from a completely isotropic distribution to a distribution which is
completely peaked in the forward and backward directions the variation in-
troduced in C would only be X = B(l log2) =0,306 @ i. e, 2.2%. If we insert
the realistic value (47) for b we get for X: X =(4a /rt)(1-log2), which is 1nde
pendent of as the correction to the correction / in equation (43).

king as a- base the simplest approx1mat10n (44) we therefore find

(48") . X =

(49) | C(33) = 1.0023 C(44) ‘C(46) = 1,0028 C(44)

Approximation (46) is therefore seen to be good to 5 parts in 10000,

A1l the approx1mate correction factors C(33), C(44) and C(46) should
be multiplied by (1+f3) /2= 1.005 if one wants to take account of equation (36).

The precedlng considerations show that one can take considerable
liberties in approximating the function A(T) as long as one does not violate
its normalization. It will be a long time before storage ring experiments
with their notoriously slow accumulation of data will permit experiments in
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which the statistical error in the determination of a cross section is less
than 1% and for these it will be still quite sufficient to use approx1mat10ns
for A(T) of the type (44).

To illustrate our results we now discuss the rad1at1ve corrections
for the reaction

(50) . et + "= r4.+ e

in which the muons are observed at 0 = . At a sufficiently high energy
of both electrons and muons there will be 11tt1e interference between the ra
dlatlon emitted by either type of particle. We can then separate the function
f(n) into f(®) = fe(n)"'f,‘, @). Correspondlngly we shall have

(61) f3=f5e+f3r_

the values of which are listed in the following table,

E(Mev) F"e fﬂ/,_ 2
250 0.059 ~ 0.010 0.069
500 0.065 0.016 0.081
750 0.069 0.020 0.089

1000 0.072 0.023 0.095
1250 0.074 0.025 0,099
1500 0.076 0.026 0.102
1750 0.0717 0.028 0.105
2000 = 0.078 0,029 0.107
2250 0.079 0.030 0.109
2500 0.080 0,031 0,111
2750 0.081 0.032 0.113
3000 0.082 0.033 0.115

To evaluate the radiative corrections for this process we put in

correspondence to equation (44) and taking account of the normalization of
A and of (51)

(52) 2BAT) = B (8EF-D) +8(1’T+f>))+ ﬁl-‘(s (@-9 +8(@+9)

where q is the unit vector in the direction of flight of the negative muon.
This approximation should be good for E.R. muons,
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We assume in agreement with the properties of an experimental
arrangement actually proposed for use with Adone that

(53) A pRADKE

the energy resolution of this éxperiment being based on the existence of
absorbers in the path of the muon and therefore being less accurate than
the observation of transverse momentum afforded by a spark chamber,

A remarkable feature of this type of experiment is that the momen
" tum resolution in the spark chambers does not give any information about
the radiation lost in the creation of the muons, With regard to the second
term in (52) we can therefore apply the rules of section 3, valid for the ca
se of pure energy resolution. For the first term we apply (45), so that

(54) ﬂNC = 1+ )[ ﬁ(_@_&) + ﬂ/“ rAGO)B]

B
where

(55) Ap' = Ap(l +Ap’/aw?) 1/2

If the first part of the inequality (53) is satisfied one has of course A p'=A p.
One can improve equation (54) by taking account of (36). This requires that
the first term in (54) be multiplied by (1+(§) 2, As an extreme example
we consider a very accurate experiment in which A p/E=0,001 and AwW/E=
=0.01., The momentum resolution corresponds to assuming that it is possi-
ble to determine the angle of the muons to within Imrad. In this extreme cav
se one gets for the radiative correction factor the value CN=0.54., We have
assumedﬁ =0,095 which (compare table) corresponds to an energy of 1000
Mev, :

Equation (54) can also be applied to the case in which the two spark
chambers are used to look at events with, say, 45°< 0 € 1359 and -45° <
& 45°, (The centres of the spark chambers are assumed to have 6 =90° and

=0 and 180° respectively). Formula (54) then still holds if A p' is repla-
ced by 4 p/|sindcos@ | and Aw by Aw/(sinOcos@|. The latter corre-
sponds to assuming that the energy of the muons is measured by counting
the gaps traversed by these particles. If the experiment is extended to an
gles of up to 45° it follows that over the whole range of the experiment C
should vary from C(90°) to C(45°) = (900) 2 B/2 = (90°) x 1.0336.

It must be remembered that d o‘ /C defines (compare equation
(20)) dzo' - which we can term the 1nfrared corrected cross section. In or
der to compare this cross section with dzo’o obtained from lowest order per
turbation theory we still have to apply the ultraviolet correction. To this
end we have to add a muon contribution to (22). (There are no mixed elec-
tron muon terms, owing to the Cabbibo Putsolu. theorem(g)) For an energy
of 1000 Mev one has X\ = 0,068,
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APPENDIX I,

The destruction of the incident particles and the creation of the
final particles define a four current jv (x). This four current in turn will
give rise to the emission of radiation, the vector potential of which sati-
sfies the equation

\

(A1) | O A (x) = -4wJ  (x)

This equation has to be solved assuming that limA ") (x) = 0 corresponding
t#-00
to the fact that we assume that at the beginning of the reaction there is no

radiation present.

4 Introducing the Fourieramplitudes A, (k) and j (k) by Ay (x)=
= Sd kA (k)ei(kx),' jy (x)= ‘fd‘]ﬂkj v (k)el(kx) one has as a solution of (A1)
Ay (k)=4Tj,, (k)/kz. In the integration over d%k the poles at k2=0 haveto
be circumnavigated in such a way that A(x) vanishes for negative infinite
times., For positive infinite times we will then have only a positive energy
contribution, precisely

(a2) AGMw = e (g, 01/ 0

-5
where @ ="k‘. If one introduces a finite volume V of normalization (A2) can
be replaced by

-
(A2') A% = @15 Z—EJJ%A oilkx)

>
In (A2) as well as in (A2') one has (kx)=(kx)-wt. To determine the number
of photons emitted in process (1) we compare (A2') with the expression
< out h 1/2 & = out,?® i(kx)
(A3) A% = 2 ) % (1) (m)et ™ L c
e wV y a

in which egl' (1-;) is a_.three dimensional polarization vector, o. =1,2 and

(ey (k),k)=0, a%ut(k) is the amplitude of the outgoing field - its destruction
operator in 2nd quantization. The average number of photons with polariza-
tion& and momentum k is given by

v 2
(A4) | H°:*'(E> - a°“*'(i€>|

(.

comparing (A3) with (A2') one therefore finds that
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9 (L (k, @)l
AwV

(a5) T i (k) = W) = (2w)

where J 4 is the component of j perpendicular to k. In continuous notatlon

and in correspondence to equation (5) of the text we can define d3n(k) asthe
average number of photons in the momentum interval a3k, It follows imme
diately from (A5) that

3, (» »
(A6) ’5® = em)° G| &l

(we have put A = 1 in this expression).

In order to determine the coefficient 5 defined in equations (4) and
(5) we consider the case of a particle which is born at time t=0 and accelera
ledina negligibly small time to the flnal velocity v. In this case we have
](X) =0 for t< 0 and

(A7) ?(x) = e:/’ S(;c.—gt) for t>0.

The § -function indicates that we deal with a pointparticle. To simulate the
experimental situation in which light emitted by the particle long after its
creation cannot be observed, we imagine (A7) to be multiplied by a conver-
gence factor e8! (with £» 0) and we evaluate j (k) in the limit &€-» 0. This
gives

> Q Rt
ew)* ik =ev { dtSdBX §(F-T) o Hkx )i - gt
e J

and therefore

4 ng
(A8) _ 2m)j(k,d) = -ie

s .

((kv) -)

The destruction of a particle gives a similar contribution to the current,
The convergence factor has to be chosen as e™ &t and the integration has
to be extended from -oo to 0 instead of from 0 to + 0. As a result the ex
pression for (A8) changes sign. It follows that the expression for J corre-

sponding to the creation and annihilation of n particles with velocities v;
can be given as

1

&1 V.

®)

where the signature & ; is positive for the creation of a positive or the de
struction of a negative particle, it is negative for the creation of a negati-
ve and the destruction of a positive particle. '

n
(A9) emr)* j(ft:w) = ~i)e] Z
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The denominators in (A8) and (A9) indicate a strong forward pea
king for extreme relativistic particles. Indeed one can write for the deno
minator @ (1-vcos0) (where 0 is the angle between the direction of fligh1:'
of the particle and the direction of flight of the photon. If v is close to 1
most of the radiation will be expected to go into an angle of order l/b’

( Y = E/m). This forward peaking is opposed by the transversality of the

radiation, which via J_|, (compare (A5)) introduces a factor sin20 into the
angular distribution function, We shall now discuss this behaviour of the

‘angular distribution for a special case,

The great majority of experiments proposed for et-e” colliding
beams deal with the destruction and creation of pairs of particles with op--
posite velocities. In many cases the energies of all the particles are ex-
treme relativistic, We therefore consider first the current and the photon
numbers created in the destruction (or creation) of a particle and an anti-
particle in the centre of mass system. According to the rule given after (A9)
the signatures of the current contributions are opposite, but since also the
velocities of the pair are opposed to one another the contributions of the two
particles will add, Chosing 0Z ag the direction of flight of the negative par
ticle and remembering that @W= |kl we get for the current

21ev

o (1-v cosO)

(a10) )t -

Inserting this into equation (A6) one gets:

3— - 40 v2 ded sin20

(a11) d nk) (2'"')2 w (1-'-V200S20)

) dcos0d¢

Comparing this equation with equation (5) of this paper one immediately ar
rives at the following definition of
+1

2
_ 2& 1-x
(A12) [3 = ._Sl dx ——-———(l_vzxz)z

as a result of the integration over all the directions of the photon, The in-
- tegral can be exactly evaluated and gives

1+v

(A13) R =% (%(1+v2)10g1_v - 2)
which gives
(A14) B - 2% (log g2y - -él-) E.R.

in the extreme relativistic limit and
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(A15) - | p = = v ‘N.R.

in the non relativistic limit, The following table covers the range of (A13)
in which neither approximation (A14) nor (A15) are valid, :

It is important to note that if the interfe
x : »l;O\OO.ﬁ ‘ . renceterm is left out in the computation of (A6)

‘ ' ives if (34 +3_ )2 is approximated by 33‘_+3_ equa -
1.1 1,14 tion (A14) results only slightly changed. One ob
1,2 2,17 tains in this case log2 Yy -1 instead of log2y -1/2
1.3 3.09 The neglect of the interference term for E.R. par
1.4 3.94 ‘ ticles therefore involves an error of A3 =-2a /% =
1.5 4,67 = 0.465% - the interference is constructive since
1.6 5.34 the currents of electron and positron add. In sec
1.7 6.02 ‘| tion 7 we have neglected the interference betwe-~
1.8 6,62 '~ en the radiation emitted by the muons and the ra
1.9 7,15 diation emitted by the electrons. The inclusion
2.0 7.70 of this interference term can now be estimated

to give a contribution smaller than 0.5% to s
since for muons emitted at 90° there should be
no interference at all,

There are however glamorous exceptions to the rule that the inter
ference term can be neglected: one of them is the backward electron posi-
tron scattering. In this process we have full constructive interference bet
Ween the currents of all the four particles involved in the process so that

4ﬁe, which with the values listed in table I gives (3 =0.33 at 3000 Mev!

Equatlon (A11) allows one to determine the angular distribution
function f(n) introduced. in equatlon (28). Indeed it follows from (A11l) and
(A12) that we can put

> 3 sin20 «
(A16) f(n)d n =

dcos@dé

2
(1-v coszQ)2 ‘W

‘That this function is properly normalized follows from (A12),

" The value of the function for cos0=0is &« /A T 2. The choice of
the constant b defined in equation (46) was made on the basis (1-b)/4® =
= u/(%w . This ‘choice is of course only meaningful if it gives 1-b < 1,i.e,
if A is sufflclently large. Indeed, a dlscussmn of £f(W) shows a completely
different behaviour for v2 < 1/2 and for v2 > 1/2: For v2< 1/2 the function
f has two minima at cos® = + 1 and a maximum at cos0 = 0, For v2> 1/2
the maximum at cos@=0 becomes a minimum and two new maxima are born
at ‘

v , 2 _ 2 -1 2
(A17) sin Om = (x -1) Y >2
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With increasing energy these maxima form the backward and forward peaks
placed at sinOmN + 1/3 . The value of f at the maximum is given by

. _« y*
fm 2 2 ‘
m 4{51( ¥° - 1
At high energies fy, therefore increases as Y 2. The typical behaviour of
f(n) is shown in fig. 1 for a’ =3.

(A18)

APPENDIX 2,

In this appendix we discuss the evaluation of some typical integrals
of infrared electrodynamics. We first determine N defined in equation (17)
of the text. The simplest way of doing this is by the use of the separation
theorem from which we had derived equation (30) as a definition of A(W).
Equation (30) is valid for any y » 1 and must therefore also be valid for ‘
y->» oo, Integrating (30) over d3u and remembermg that A(u) is normalized
one gets

| (A19) 1

) “B ye,sd_: B0, T )HT
"2

Putting k/w =x in equation (12) one gets for h(0, )
' , _ -1x‘t
(A20) h(0,T)= 3 S—(l - )

and since we can evaluate (A19) in the 11m1t y—+0m we only need the asymp-
totical behaviour of h, In this way one obtains

(A21) h(0,T) = Plogyyc +if 5

Since h must be analytical in the lower half of the complex T-plane (cor_x_l
pare section 2) we think of the log as defined in a complex = -plane which
is cut along the positive imaginary axis. Insertlng from (A21) into (A19)
one gets

. -0 . ‘B
(A22) 1= —N—Y S d-c-;'n’elt -igW

The path of integration can now be deformed into a loop which starts from
+i oo, follows the left bank of the cut to 0 and rises along the right bank to
+ioco, It follows that we can write for the integral
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X

+oo  ioo . - )
at T (2P _(zB))eR2

.71

where the subscripts r and 1 indicate respectively the right and left bank
of the cut along the positive imaginary axis. One has

. 3 i
175 o —
tr=,‘Cle 2  and T1= "L"e 2
Using the definition

e I
T (z) = S dte "2t
o

of the r-function as well as the identity r(z)  (1-2) = w/sin 7z one
obtains equation (19) from (A22),
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